Días Planeta hasta 70% dcto.  Ver más

menú

0
  • argentina
  • chile
  • colombia
  • españa
  • méxico
  • perú
  • estados unidos
  • internacional
portada Parallel Python with Dask: Perform distributed computing, concurrent programming and manage large dataset (en Inglés)
Formato
Libro Físico
Editorial
Idioma
Inglés
N° páginas
174
Encuadernación
Tapa Blanda
Dimensiones
23.5 x 19.1 x 0.9 cm
Peso
0.31 kg.
ISBN13
9788119177653

Parallel Python with Dask: Perform distributed computing, concurrent programming and manage large dataset (en Inglés)

Tim Peters (Autor) · Gitforgits · Tapa Blanda

Parallel Python with Dask: Perform distributed computing, concurrent programming and manage large dataset (en Inglés) - Peters, Tim

Libro Físico

$ 69.910

$ 97.100

Ahorras: $ 27.190

28% descuento
  • Estado: Nuevo
  • Quedan 76 unidades
Origen: Estados Unidos (Costos de importación incluídos en el precio)
Se enviará desde nuestra bodega entre el Lunes 01 de Julio y el Jueves 11 de Julio.
Lo recibirás en cualquier lugar de Chile entre 1 y 3 días hábiles luego del envío.

Reseña del libro "Parallel Python with Dask: Perform distributed computing, concurrent programming and manage large dataset (en Inglés)"

Unlock the Power of Parallel Python with Dask: A Perfect Learning Guide for Aspiring Data ScientistsDask has revolutionized parallel computing for Python, empowering data scientists to accelerate their workflows. This comprehensive guide unravels the intricacies of Dask to help you harness its capabilities for machine learning and data analysis.Across 10 chapters, you'll master Dask's fundamentals, architecture, and integration with Python's scientific computing ecosystem. Step-by-step tutorials demonstrate parallel mapping, task scheduling, and leveraging Dask arrays for NumPy workloads. You'll discover how Dask seamlessly scales Pandas, Scikit-Learn, PyTorch, and other libraries for large datasets.Dedicated chapters explore scaling regression, classification, hyperparameter tuning, feature engineering, and more with clear examples. You'll also learn to tap into the power of GPUs with Dask, RAPIDS, and Google JAX for orders of magnitude speedups.This book places special emphasis on practical use cases related to scalability and distributed computing. You'll learn Dask patterns for cluster computing, managing resources efficiently, and robust data pipelines. The advanced chapters on DaskML and deep learning showcase how to build scalable models with PyTorch and TensorFlow.With this book, you'll gain practical skills to: Accelerate Python workloads with parallel mapping and task schedulingSpeed up NumPy, Pandas, Scikit-Learn, PyTorch, and other librariesBuild scalable machine learning pipelines for large datasetsLeverage GPUs efficiently via Dask, RAPIDS and JAXManage Dask clusters and workflows for distributed computingStreamline deep learning models with DaskML and DL frameworksPacked with hands-on examples and expert insights, this book provides the complete toolkit to harness Dask's capabilities. It will empower Python programmers, data scientists, and machine learning engineers to achieve faster workflows and operationalize parallel computing.Table of ContentIntroduction to DaskDask FundamentalsBatch Data Parallel Processing with DaskDistributed Systems and DaskAdvanced Dask: APIs and Building BlocksDask with PandasDask with Scikit-learnDask and PyTorchDask with GPUsScaling Machine Learning Projects with Dask

Opiniones del libro

Ver más opiniones de clientes
  • 0% (0)
  • 0% (0)
  • 0% (0)
  • 0% (0)
  • 0% (0)

Preguntas frecuentes sobre el libro

Todos los libros de nuestro catálogo son Originales.
El libro está escrito en Inglés.
La encuadernación de esta edición es Tapa Blanda.

Preguntas y respuestas sobre el libro

¿Tienes una pregunta sobre el libro? Inicia sesión para poder agregar tu propia pregunta.

Opiniones sobre Buscalibre

Ver más opiniones de clientes