Venta Flash: Libros importados con hasta 50% dcto  Ver más

menú

0
  • argentina
  • chile
  • colombia
  • españa
  • méxico
  • perú
  • estados unidos
  • internacional
portada The Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, (en Inglés)
Formato
Libro Físico
Idioma
Inglés
N° páginas
602
Encuadernación
Tapa Blanda
Dimensiones
23.5 x 19.1 x 3.1 cm
Peso
1.02 kg.
ISBN13
9781805122500

The Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, (en Inglés)

David Ping (Autor) · Packt Publishing · Tapa Blanda

The Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, (en Inglés) - Ping, David

Libro Nuevo

$ 55.140

$ 100.260

Ahorras: $ 45.120

45% descuento
  • Estado: Nuevo
  • Quedan 54 unidades
Origen: Estados Unidos (Costos de importación incluídos en el precio)
Se enviará desde nuestra bodega entre el Viernes 02 de Agosto y el Miércoles 14 de Agosto.
Lo recibirás en cualquier lugar de Chile entre 1 y 3 días hábiles luego del envío.

Reseña del libro "The Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, (en Inglés)"

Design, build, and secure scalable machine learning (ML) systems to solve real-world business problems with Python and AWSPurchase of the print or Kindle book includes a free PDF eBookKey FeaturesGo in-depth into the ML lifecycle, from ideation and data management to deployment and scalingApply risk management techniques in the ML lifecycle and design architectural patterns for various ML platforms and solutionsUnderstand the generative AI lifecycle, its core technologies, and implementation risksBook DescriptionDavid Ping, Head of GenAI and ML Solution Architecture for global industries at AWS, provides expert insights and practical examples to help you become a proficient ML solutions architect, linking technical architecture to business-related skills.You'll learn about ML algorithms, cloud infrastructure, system design, MLOps, and how to apply ML to solve real-world business problems. David explains the generative AI project lifecycle and examines Retrieval Augmented Generation (RAG), an effective architecture pattern for generative AI applications. You'll also learn about open-source technologies, such as Kubernetes/Kubeflow, for building a data science environment and ML pipelines before building an enterprise ML architecture using AWS. As well as ML risk management and the different stages of AI/ML adoption, the biggest new addition to the handbook is the deep exploration of generative AI.By the end of this book, you'll have gained a comprehensive understanding of AI/ML across all key aspects, including business use cases, data science, real-world solution architecture, risk management, and governance. You'll possess the skills to design and construct ML solutions that effectively cater to common use cases and follow established ML architecture patterns, enabling you to excel as a true professional in the field.What you will learnApply ML methodologies to solve business problems across industriesDesign a practical enterprise ML platform architectureGain an understanding of AI risk management frameworks and techniquesBuild an end-to-end data management architecture using AWSTrain large-scale ML models and optimize model inference latencyCreate a business application using artificial intelligence services and custom modelsDive into generative AI with use cases, architecture patterns, and RAGWho this book is forThis book is for solutions architects working on ML projects, ML engineers transitioning to ML solution architect roles, and MLOps engineers. Additionally, data scientists and analysts who want to enhance their practical knowledge of ML systems engineering, as well as AI/ML product managers and risk officers who want to gain an understanding of ML solutions and AI risk management, will also find this book useful. A basic knowledge of Python, AWS, linear algebra, probability, and cloud infrastructure is required before you get started with this handbook.Table of ContentsNavigating the ML Lifecycle with ML Solutions ArchitectureExploring ML Business Use CasesExploring ML AlgorithmsData Management for MLExploring Open-Source ML LibrariesKubernetes Container Orchestration Infrastructure ManagementOpen-Source ML PlatformsBuilding a Data Science Environment using AWS ML ServicesDesigning an Enterprise ML Architecture with AWS ML ServicesAdvanced ML EngineeringBuilding ML Solutions with AWS AI ServicesAI Risk ManagementBias, Explainability, Privacy, and Adversarial Attacks(N.B. Please use the Read Sample option to see further chapters)

Opiniones del libro

Ver más opiniones de clientes
  • 0% (0)
  • 0% (0)
  • 0% (0)
  • 0% (0)
  • 0% (0)

Preguntas frecuentes sobre el libro

Todos los libros de nuestro catálogo son Originales.
El libro está escrito en Inglés.
La encuadernación de esta edición es Tapa Blanda.

Preguntas y respuestas sobre el libro

¿Tienes una pregunta sobre el libro? Inicia sesión para poder agregar tu propia pregunta.

Opiniones sobre Buscalibre

Ver más opiniones de clientes